Multiplying and Dividing Rational Numbers

YOU WILL NEED

- a calculator

GOAL

Solve problems that involve multiplying and dividing rational numbers.

LEARN ABOUT the Math

Thomas was talking to his cousin in the United States. Thomas said the temperature was -5.5°. His cousin said that the temperature where he lived was -1.5°. However, Thomas was using the Celsius scale and his cousin was using the Fahrenheit scale.

Thomas found this conversion formula:

$$
F=\frac{9}{5} C+32
$$

? Which temperature was lower?
A. What would Thomas's temperature be in Fahrenheit, if it had actually been $+5.5^{\circ} \mathrm{C}$ instead of $-5.5^{\circ} \mathrm{C}$?
B. Why does it make sense that $\frac{9}{5} \times(-5.5)$ is the opposite of $\frac{9}{5} \times 5.5$?
C. Thomas's actual temperature was $-5.5^{\circ} \mathrm{C}$. What was his temperature in degrees Fahrenheit?
D. What was his cousin's temperature in degrees Celsius?
E. Which temperature was lower?

Reflecting

F. Why were your answers to parts A and C not opposites?
G. How does knowing how to multiply and divide integers help you calculate the values in parts C and D ?
H. How does knowing how to multiply and divide fractions help you calculate the values in parts C and D ?

WORK WITH the Math

EXAMPLE $1 \quad$ Reasoning about the mean of a set of rational numbers

These temperatures were recorded at noon on January 1 from 2000 to 2008 at Edmonton International Airport. Determine the mean noon temperature on January 1 for the years given.

Year	Temperature ($\left.{ }^{\circ} \mathrm{C}\right)$
2000	-15.7
2001	1.2
2002	-21.2
2003	-5.3
2004	-16.2
2005	-19.5
2006	-2.6
2007	-3.5
2008	-12.5

Source: Environment Canada

Rachel's Solution

I used my calculator and added the temperatures together. I divided the sum by 9 , the number of temperature readings, to determine the mean noon temperature.

The mean noon temperature at Edmonton International Airport on January 1 is about $-10.6^{\circ} \mathrm{C}$.

This answer seems reasonable since there were four temperatures above this amount and five temperatures below it.
a) Use the numbers 1 and -5 in the blanks so that $\frac{9}{4} \times 2 \frac{3}{4}$ has the least possible value.
b) Use the numbers 1 and 2 in the blanks so that $\frac{-0}{5} \div \frac{3}{4}$ has the greatest possible value.

Jia-Wen's Solution

a) The missing number is either

$$
\begin{aligned}
& \frac{1}{-5}=-\frac{1}{5} \\
& \text { or } \frac{-5}{1}=-\frac{5}{1} \\
& \frac{1}{5}<\frac{5}{1}, \text { so }-\frac{1}{5}>-\frac{5}{1} \\
& -\frac{5}{1} \times 2 \frac{3}{4}<-\frac{1}{5} \times 2 \frac{3}{4}
\end{aligned}
$$

$$
\frac{-5}{1} \times 2 \frac{3}{4}=-5 \times \frac{11}{4}
$$

$$
=-\frac{55}{4}
$$

$$
\frac{1}{-5} \times 2 \frac{3}{4}=-\frac{1}{5} \times \frac{11}{4}
$$

$$
=-\frac{11}{20}
$$

$-\frac{5}{1} \times 2 \frac{3}{4}$ gives the least product.
b) $\frac{-1}{5} \div 2 \frac{3}{4}=-\frac{1}{5} \div \frac{11}{4}$

$$
\begin{aligned}
& =-\frac{1}{5} \times \frac{4}{11} \\
& =-\frac{4}{55} \\
\frac{-2}{5} \div 1 \frac{3}{4} & =-\frac{2}{5} \div \frac{7}{4} \\
& =-\frac{2}{5} \times \frac{4}{7} \\
& =-\frac{8}{35}
\end{aligned}
$$

$$
-\frac{2}{5} \div 1 \frac{3}{4} \text { gives the greatest quotient. }
$$

The product had to be negative since the fraction involved a positive and negative value.

If you multiply a negative number by a positive number, the answer is less if the negative number is less.

I checked by multiplying.
I was right, since $-\frac{55}{4}$ is almost -14 and $-\frac{11}{20}$ is not even -1 .
\qquad

In Summary

Key Ideas

- Multiplying and dividing rational numbers in decimal form combines the rules for multiplying and dividing positive decimals with the rules for multiplying and dividing integers. For example,

$$
(-3.2) \div 1.2=-(3.2 \div 1.2)
$$

- Multiplying and dividing rational numbers in the form of fractions combines the rules for multiplying and dividing positive fractions with the rules for multiplying and dividing integers. For example,

$$
5 \frac{3}{4} \times\left(-2 \frac{1}{3}\right)=-\left(\frac{23}{4} \times \frac{7}{3}\right)
$$

Need to Know

- You can divide rational numbers in the form of fractions by using a common denominator and dividing the numerators. For example,

$$
-\frac{12}{25} \div \frac{3}{5}=-\frac{12}{25} \div \frac{15}{25}
$$

- You can also divide by multiplying by the reciprocal. For example,

$$
-\frac{12}{25} \div \frac{3}{5}=-\frac{12}{25} \times \frac{5}{3}
$$

Checking

1. Evaluate.
a) $(-2)(9.5)$
b) $\frac{-4}{7} \times \frac{6}{-5}$
c) $(-8) \div(0.5)$
d) $\frac{2}{5} \div\left(-\frac{5}{8}\right)$
2. How much less is $\frac{-3}{4} \div \frac{5}{6}$ than $\frac{-3}{4} \times \frac{5}{6}$?
3. A water tank lost $\frac{1}{3}$ of its volume of water one day and then $\frac{1}{2}$ of what was left the next day. What rational number describes the volume of water after the second day as compared to the original volume?

Practising

4. Calculate.
a) $-\frac{2}{3} \times \frac{5}{8}$
b) $-\frac{2}{3} \times \frac{-5}{8}$
c) $\frac{2}{3} \times \frac{-8}{5}$
d) $-\frac{5}{8} \div \frac{2}{3}$
e) $\frac{-2}{3} \div\left(-\frac{5}{8}\right)$
f) $\frac{2}{3} \div \frac{5}{8}$

Year	Temperature $\left({ }^{\circ} \mathrm{C}\right)$
2002	-20.4
2003	-7.6
2004	-15.8
2005	-9.3
2006	-10.5
2007	-16.3

Source: Environment Canada

5. Multiple choice. Which expression is about $-\frac{1}{2}$?
A. $-\frac{2}{3} \times \frac{1}{8}$
B. $\frac{8}{9} \div\left(-\frac{1}{2}\right)$
C. $\frac{4}{5} \div\left(1 \frac{1}{2}\right)$
D. $-\frac{2}{3} \div \frac{5}{4}$
6. Multiple choice. Without evaluating, determine which expressions have the same product as $\left(\frac{3}{4}\right)\left(\frac{5}{8}\right)$.
$W:\left(\frac{-3}{-4}\right)\left(\frac{5}{8}\right) X:-\left(\frac{3}{4}\right)\left(-\frac{5}{8}\right) Y:\left(-\frac{3}{8}\right)\left(-\frac{5}{4}\right) Z:\left(\frac{-3}{4}\right)\left(\frac{5}{-8}\right)$
A. X and Y
C. X, Y, and Z
B. X and Z
D. all of these expressions
7. Use the numbers $-1,-3$, and 8 in the blanks so that $-\times \frac{2}{3}$ has
a) the least possible value
b) the greatest possible value
8. Consider the numbers $-4.2,-1.3,-8.4$, and 7.3.
a) Which two have a product of 35.28 ?
b) Which two have a quotient of about -1.75 ?
9. The temperatures at Fort Nelson, BC, at 5:00 a.m. on December 25 from 2002 to 2007 are shown in the table. Determine the mean temperature at 5:00 a.m. on December 25 for these years.
10. Calculate. Show your work.
a) $\left(\frac{5}{-12}\right)\left(\frac{-8}{15}\right)$
b) $\left(3 \frac{6}{7}\right)\left(-8 \frac{1}{3}\right)$
c) $\frac{15}{16} \div\left(-1 \frac{1}{24}\right)$
d) $-4 \frac{2}{3} \div \frac{7}{12}$
e) $(-3.2) \div(-8.4)$
f) $7.2 \div(-0.6)$
11. A formula to convert temperatures between degrees Fahrenheit and degrees Celsius is $C=\frac{5}{9}(F-32)$. Use this formula to convert the following.
a) Miami, Florida's record high of $98^{\circ} \mathrm{F}$ to degrees Celsius
b) Anchorage, Alaska's record low of $-37^{\circ} \mathrm{F}$ to degrees Celsius
c) $0^{\circ} \mathrm{C}$ to degrees Fahrenheit
12. Two tanks hold the same amount of water. Tank 1 loses $\frac{2}{3}$ of its volume. Tank 2 gains $\frac{1}{4}$ of its volume. What is the final ratio of water volume, comparing tank 1 to tank 2 ?
13. An investment loses $\frac{1}{2}$ of its value and then loses another $\frac{2}{3}$ of the new value.
a) What fraction of its original value is the final value?
b) Can you multiply $-\frac{1}{2} \times\left(-\frac{2}{3}\right)$ to calculate the answer to part a)? Explain.
14. A pail of water has been sitting for a while, and $\frac{1}{8}$ of the water has evaporated.
a) What could $\frac{3}{4} \times\left(-\frac{1}{8}\right)$ describe about this situation?
b) What could $-\frac{1}{8} \div\left(-\frac{1}{4}\right)$ describe about this situation?
15. The product of two rationals is $-\frac{12}{25}$. What might their quotient be?
16. The product of $-\frac{3}{4}$ and two other rationals is $\frac{1}{4}$. The quotient of the two other rationals is $-\frac{3}{4}$.

$$
\begin{aligned}
-\frac{3}{4} \times \frac{\circ}{\square} \times \frac{\Delta}{\square} & =\frac{1}{4} \\
\div \frac{\Delta}{\square} & =-\frac{3}{4}
\end{aligned}
$$

a) How do you know that one unknown rational is positive and one is negative?
b) What could the unknown rationals be?
17. Evaluate each expression for the given values. Use a calculator.
a) $x-2 y$ when $x=-9.78$ and $y=3.2$
b) $(x+y)(x-y)$ when $x=2.5$ and $y=-7.8$
c) $x(x+y)$ when $x=-2 \frac{1}{2}$ and $y=3 \frac{3}{4}$
d) $\frac{x}{y}+\frac{y}{x}$ when $x=-1 \frac{1}{2}$ and $y=2 \frac{1}{4}$

Closing

18. Create a brief "instruction manual" to help someone with the rules for multiplying and dividing rational numbers.

Extending

19. Calculate each product.
a) $-9 \times 0.2222 \ldots$
b) $-99 \times 0.232323 \ldots$
20. The product of a positive and a negative rational number is 2 greater than their sum. What could they be?
21. The width of a rectangle is $\frac{1}{4}$ of the length. If you increase the width by 12 m and double the length, you obtain a perimeter of 60 m .
Determine the dimensions of the original rectangle.
