3.1 Enlargements and Reductions

Name:

Below are 5 drawings of a dog

What is the same?

What is different?

How can we tell the similarities and the differences?

3.2 Determining Similarity

Name:

Materials: Ruler, Protractor, graph paper Goals: To determine whether polygons are similar

POLYGON-A many sided figure

Polygons are SIMILAR if they have the _____

Which of these TRIANGLES are SIMILAR?

Why are they SIMILAR?

Measure the sides and angles of these shapes. What do you notice?

Conclusion: Angles:

Corresponding Angles-

Sides:

RULE: TWO FIGURES ARE SIMILAR IF

b	С	В	C
a 1	d	2	
		Α	D
Measure and record the sides of abcd and ABCD			
ab corresponds to AB cd corresponds to CD		bc corresponds to BC; da corresponds to DA	•.
Rectangle # 2 is an ENLARGEMENT			
The ratio of # 2 to # 1 is 3:2			
If 2 polygons are similar, then the corresponding sides are			
- And the serve	anonding a	nglos ave	
And the corresponding angles are			
CONCLUSION TWO OR MORE POLYGONS ARE SIMILAR WHEN THEY ARE EITHER OR			
One looks like an _			of the other

USING THE SIMILAR POLYGON PROPETY TO FIND A MISSING SIDE

Find the length of *****

3.2 Worksheet

Name:

Determine whether the following pairs of polygons are similar

3.3

Scale Factor

Name Block:

❖ The SCALE FACTOR is the number by which a corresponding side of a polygon is MULTIPLIED, to form a new polygon

SCALE FACTOR can be shown in several ways

Ratio

3:2 or 1.5:1 or $\frac{3}{2}$

Percent

150%

Decimal

1.5

ALL OF THE SCALE FACTORS TO LEFT

ARE

ENLARGEMENTS

NOTE: The polygons must first be SIMILAR

❖ Do Activity on pp. 110-111

Any scale factor greater than 1 is an ENLARGEMENT

Any scale factor less than 1 is a REDUCTION

❖ ENLARGEMENTS

The second rectangle is an ENLAREMENT of the first one. Determine the SCALE FACTOR of the following enlargement

❖ REDUCTIONS

Determine the scale factor of this REDUCTION

❖ MAPS ARE A GOOD EXAMPLE OF USING SCALE FACTOR

Example: Given the following scale

What is the ACTUAL DISTANCE for a map distance of 7 cm.