Chapter Review

Study | Aid

- See Lesson 2.5, Examples 1, 2, 3, 4, and 5.
- Try Chapter Review question 12.

Study | Aid

- See Lesson 2.6, Examples 1, 2, and 3 and Lesson 2.7, Example 4.
- Try Chapter Review questions 13 and 14.

with the innermost brackets, if there is more than one set. $= 4 + 6[2^3 + 2] \div 2$ Evaluate powers next, using the Exponents. $= 4 + 6[8 + 2] \div 2$

Study | Aid

- See Lesson 2.7, Examples 1, 2, and 3, and Lesson 2.8, Examples 1, 2, 3, and 4.
- Try Chapter Review questions 15, 16, 17, 18, and 19.

FREQUENTLY ASKED Questions

- How can you simplify a power involving products and quotients?
- In a product, the exponent applies to each factor. $(ab)^m = a^m b^m$ For example, $(2 \times 3)^5 = 2^5 \times 3^5$. In a quotient the exponent applies to both the numerator and denominator. $\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$. For example, $\left(\frac{3}{5}\right)^2 = \frac{3^2}{5^2}$.
- How can you evaluate an expression involving many operations?
- Use BEDMAS (Brackets, Exponents, Division, Multiplication, Addition, Subtraction) to help you remember the order to perform the operations. For example,
 - $4 + 6[2^3 + (6 4)] \div 2$ Evaluate what is in the Brackets. Start $= 4 + 6(10) \div 2$ **D**ivide and **M**ultiply from left to right. $= 4 + 60 \div 2$ = 4 + 30Add and Subtract from left to right. = 34
- How can you calculate or estimate a square root?
- **A1:** You can use the square root key on your calculator $(\sqrt{\ })$. For example, [2] 7 . 4 = 5.234500931 You can check your answer by multiplying the square root by itself to see if you get the original number.
- **A2:** You can use perfect squares as benchmarks to estimate the square root of numbers that are not perfect squares. For example, $\sqrt{27.4}$ is between $\sqrt{25}$ and $\sqrt{36}$, and is much closer to $\sqrt{25}$. It is likely about 5.2.

Practice

Lesson 2.1

- **1.** Sketch a model to represent the following. Label each side length.
 - a) a square field with an area of 225 m²
 - **b)** 10^2
 - c) a cube with a side length of three units
- **2. a)** Calculate the side length of a square with an area of 196 mm².
 - **b)** Calculate the side length of a cube with a volume of 125 cm³.
- 3. Nita is planting 49 carrot seeds to grow in her garden. She wants to plant them in a square plot. She needs to plant them 3 cm apart, and 3 cm apart from the edge of the plot.
 - a) Sketch the square garden with the seeds.
 - **b)** Determine the dimensions of the garden.
 - c) Determine the area of the garden.

Lesson 2.2

4. Complete the table.

	Power	Base	Exponent	Repeated Multiplication	Value
a)	$(-3)^4$				
b)				-(6)(6)(6)	
c)		-4			256

- **5.** Evaluate without using a calculator. Show your work.
 - **a**) 6^2
- **b**) -2.3^3 **c**) $-(-1)^3$
- **6.** Susan needs to wrap two gift boxes in the shape of cubes. She has a sheet of wrapping paper 140 cm by 30 cm. One box is 7 cm by 7 cm by 7 cm. Each side of the other box has an area of 529 cm². Does she have enough wrapping paper to wrap both boxes? Show your work.

Lesson 2.4

- **7.** Simplify.
- **a)** $(5^5)^5(5^2)$ **b)** $\frac{(12^2)^3}{12^2}$ **c)** $(19^7)(19) \div (19^2)^2(19^2)$
- **8.** Evaluate.
- a) $(6^2)(6^3)^2$ b) $\frac{(4^5)^2}{4^6}$ c) $\frac{(-3^2)(-3^7)}{(-3^2)^3(-3^3)}$
- 9. Simplify.
- a) $\lceil (x^5)(x^2) \rceil^2$ b) $a^9 \div a^5 \div a$ c) $(v^4)^6 \div (v^3)^5$

10. Use repeated multiplication to explain why each statement is true.

a)
$$\frac{8^5}{8^3} = 8^2$$

b)
$$6^2 \times 6^5 = 6^7$$

11. Express 32^2 with a base of 2.

Lesson 2.5

12. Express as a power with a single base. Show your work.

a)
$$(6^3 \times 36^4)^2$$
 b) $(\frac{7^6}{7^3})^4$

b)
$$\left(\frac{7^6}{7^3}\right)^4$$

Lesson 2.6

13. Simplify without using a calculator. Show all your work.

a)
$$16^2 - 8^2 \div 2^2$$

a)
$$16^2 - 8^2 \div 2^2$$
 b) $6^2 + 2 \times 3^2 - 8$

14. Which question would you ask to see if someone understands order of operations? Explain why.

A.
$$9^4 \times 3^2 + 4^3$$

B.
$$9^4 + 3^2 \times 4^3$$

Lesson 2.7

15. Evaluate.

a)
$$\sqrt{289}$$

d)
$$\frac{\sqrt{121}}{\sqrt{144}}$$

b)
$$\sqrt{39.69}$$

e)
$$\frac{\sqrt{25}}{5}$$

c)
$$\sqrt{\frac{16}{36}}$$

f)
$$\sqrt{70.8964}$$

16. Verify each statement. Show your work.

a)
$$\sqrt{4.9} = 0.7$$

a)
$$\sqrt{4.9} = 0.7$$
 b) $\sqrt{4.8} = 2.4$ **c)** $\sqrt{0.0036} = 0.06$

$$\sqrt{0.0036} = 0.06$$

Lesson 2.8

17. A square arena has an area of 200 m².

a) Without using a calculator, state the two whole numbers between which its side length is located.

b) Which whole number from part a) is a better estimate, and why?

c) Determine the length of its side to two decimal places.

18. A square garden has an area of 40 m². Which is a better estimate for the length of the garden: 6.3 m or 6.9 m? Explain how you can answer this without using a calculator.

19. Katie and her brother Nick started a window washing business to earn money in the summer. In one job, they had to wash windows that were 4.8 m off the ground. There was a hedge of large bushes beside the house so they needed to set the base of the ladder 3.2 m away from the house. About how long did the ladder need to be?